Abstract

A terahertz (THz) sensor based on the metamaterial structure, split ring resonator with four-gaps relied on centrosymmetric nested square ring resonator, is presented. The two resonant elements of the metamaterial structure generate a corresponding resonant valley on the transmission spectrum curve in the frequency range from 0.1 to 1.9 THz respectively, and both of these resonant valleys show different redshifts when the surface permittivity of the structure changes. This feature is very suitable for THz sensing, especially the quantum interference effect between the two resonant elements, which results in the formation of an electromagnetically induced transparency (EIT)-like resonance peak on the transmission spectrum curve. The sensing performances are simulated by using commercialized full-wave electromagnetic simulation software. The results demonstrated that the proposed sensor is polarization-insensitive and has a highly boosted sensitivity, which has a promising application prospect in the fields of biomedical science and drug industry.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call