Abstract
Formaldehyde (FALD) has gained prominence as an essential C1 building block in the synthesis of valuable chemicals. However, there are still challenges in converting FALD into commodities. Recently, cell-free biocatalysis has emerged as a popular approach for producing such commodities. Acetoin, also known as 3-hydroxy-2-butanone, has been widely used in food, cosmetic, agricultural and the chemical industry. It is valuable to develop a process to produce acetoin from FALD. In this study, a cell-free multi-enzyme catalytic system for the production of acetoin using FALD as the substrate was designed and constructed. It included three scales: FALD utilization pathway, glycolysis pathway and acetoin synthesis pathway. After the optimization of the reaction system, 20.17 mM acetoin was produced from 122 mM FALD, with a yield of 0.165 mol/mol, reaching 99.0% of the theoretical yield. The pathway provides a new approach for high-yield acetoin production from FALD, which consolidates the foundation for the production of high value-added chemicals using cheap one-carbon compounds.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.