Abstract
This study presents an investigation focusing on the advancement of a robot designed for subretinal injections in the context of macular degeneration treatment. The technique of subretinal injection surgery stands as the most efficacious approach for the successful transplantation of stem cells into the retinal pigment epithelium layer. This particular procedure holds immense significance in advancing research and implementing therapeutic strategies involving retinal stem cell transplantation. The execution of artificial subretinal surgery poses considerable challenges which can be effectively addressed through the utilization of subretinal injection surgery robots. The development process involved a comprehensive modeling phase, integrating computer-aided design (CAD) and finite element analysis (FEA) techniques. These simulations facilitated iterative enhancements of the mechanical aspects pertaining to the robotic arm. Furthermore, MATLAB was employed to simulate and visualize the robot's workspace, and independent verification was conducted to ascertain the range of motion for each degree of freedom.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.