Abstract

AbstractA design of a sub-scale Boundary Layer Ingestion (BLI) fan for a transonic test rig is presented. The fan is intended to be used in flow conditions with varying distortion patterns representative of a BLI application on an aircraft. The sub-scale fan design is based on a design study of a full-scale fan for a BLI demonstration project for a Fokker 100 aircraft. CFD results from the full-scale fan design and the ingested distortion pattern from CFD analyses of the whole aircraft are used as inputs for this study. The sub-scale fan is designed to have similar performance characteristics to the full-scale fan within the capabilities of the test facility. The available geometric rig envelope in the test facility necessitates a reduction in geometric scale and consideration of the operating conditions. Fan blades and vanes are re-designed for these conditions in order to mitigate the effects of the scaling. The effects of reduced size, increased relative tip clearance and thicknesses of the blades and vanes are evaluated as part of the step-by-step adaption of the design to the sub-scale conditions. Finally, the installation effects in the rig are simulated including important effects of the by-pass flow on the running characteristics and the need to control the effective fan nozzle area in order to cover the available fan operating range. The predicted operating behaviour of the fan as installed in the coming transonic test rig gives strong indication that the sub-scale fan tests will be successful.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.