Abstract

This paper proposes a new robust nonlinear $$\mathscr {H}_{\infty }$$ state feedback (NHSF) controller for an autonomous underwater vehicle (AUV) in steering plane. A three-degree-of-freedom nonlinear model of an AUV has considered for developing a steering control law. In this, the energy dissipative theory is used which leads to form a Hamilton–Jacobi–Isaacs (HJI) inequality. The nonlinear $$\mathscr {H}_{\infty }$$ control algorithm has been developed by solving HJI equation such that the AUV tracks the desired yaw angle accurately. Furthermore, a path following control has been implemented using the NHSF control algorithm for various paths in steering plane. Simulation studies have been carried out using MATLAB/Simulink environment to verify the efficacies of the proposed control algorithm for AUV. From the results obtained, it is concluded that the proposed robust control algorithm exhibits a good tracking performance ensuring internal stability and significant disturbance attenuation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.