Abstract

Purpose – This paper aims to present the design of a stability augmentation system (SAS) in the longitudinal and lateral axes for an unstable helicopter. Design/methodology/approach – The feedback controller is designed using linear quadratic regulator (LQR) control with full state feedback and LQR with output feedback approaches. SAS is designed to meet the handling qualities specification known as Aeronautical Design Standard (ADS-33E-PRF). A helicopter having a soft inplane four-bladed hingeless main rotor and a four-bladed tail rotor with conventional mechanical controls is used for the simulation studies. In the simulation studies, the helicopter is trimmed at hover, low speeds and forward speeds flight conditions. The performance of the helicopter SAS schemes are assessed with respect to the requirements of ADS-33E-PRF. Findings – The SAS in the longitudinal axis meets the requirement of the Level 1 handling quality specifications in hover and low speed as well as for forward speed flight conditions. The SAS in the lateral axis meets the requirement of the Level 2 handling quality specifications in both hover and low speed as well as for forward speed flight conditions. The requirements of the inter axis coupling is also met and shown for the coupled dynamics case. The SAS in lateral axis may require an additional control augmentation system or adaptive control to meet the Level 1 requirements. Originality/value – The study shows that the design of a SAS using LQR control algorithm with full state and output feedbacks can be used to meet ADS-33 handling quality specifications.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call