Abstract

This paper applies kinematic synthesis theory to obtain the dimensions of a constrained spatial serial chain for a valve mechanism that cleans and closes a soil conditioning port in a tunnel boring machine. The goal is a smooth movement that rotates a cylindrical array of studs into position and then translates it forward to clean and close the port. The movement of the valve is defined by six positions of the revolute-prismatic-revolute (RPR) serial chain. These six positions are used to compute the dimensions of the two spherical spherical (SS) dyads that constrain the RPR chain to obtain a one degree-of-freedom spatial mechanism. An example design of this valve mechanism is provided in detail.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call