Abstract
Venturi meters are used to measure the feedwater flow rate in most current pressurized water reactors. These meters can decrease the thermal performance of nuclear power plants because the feedwater flow rate can be overmeasured due to their fouling phenomena that make corrosion products caused by long-term operation accumulate in the feedwater flow meters. Therefore, in this paper, a software sensor using a fuzzy inference system is developed in order to increase the thermal efficiency by accurately estimating online the feedwater flow rate. The fuzzy inference system to be used for black-box modeling of the feedwater system is equipped with an automatic design algorithm that automates the selection of the input signals to the fuzzy inference system and its fuzzy rule generation including parameter optimization. The proposed algorithm was verified by using the numerical simulation data of the MARS code for Kori Nuclear Power Plant Unit 1 and also the real plant data of Yonggwang Nuclear Power Plant Unit 3. In the simulations using numerical simulation data and real plant data, the relative 2σ errors and the relative maximum error are small enough. The proposed method can be applied successfully to validate and monitor the existing feedwater flow meters.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.