Abstract

With the rapid development of the Internet of Things and to improve the teaching efficiency of the art classroom, a smart art classroom system based on the Internet of Things is proposed, which can effectively assist in teaching. First, we give the general design of the smart art classroom, including the composition of the hardware and software, and the construction method of the application system. Based on existing technologies such as RFID, smart camera, smart voice, smart terminal, and smart screen interaction, an all-around smart art classroom is constructed. Further, we present the design of an intelligent camera-based classroom assistance system based on face detection and facial expression recognition, which can effectively determine the status of students in class and can be used to assist in reminding teachers of their teaching tasks. Among them, face detection and facial expression recognition algorithms are designed based on different convolutional neural network architectures. Finally, experimental data sets are constructed to verify the accuracy of the used algorithms. The experimental results show that the detection accuracy of classroom faces is better than 95% and the accuracy of expression recognition is 88%, which can meet the application needs of intelligent art classrooms.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.