Abstract
Linear alternators work seamlessly with Free-Piston Stirling Engines (FPSE) in the energy conversion process. This research concentrates on the design and development of a tubular slot-spaced Permanent Magnet Linear Alternator (PMLA) to be coupled with the FPSE. In an attempt to increase the power density of the machine over conventional PMLAs, a slot space is added to reduce the total mass of the stator and a parametrical study is carried out for the same. Numerically analyzing the fundamental parameters such as change of stator and magnet materials, and operating conditions frequency and stroke length. The effects of slotting are studied to understand the skinning effects on the tooth and the performance variation of the machine. A modified model is obtained to surpass 100 W from the numerical analysis of the parametric variations. Putting the machine to extreme limitations, the study conducted upon variations of parameters obtained a stable maximum power density of 186 W/kg and produced a power of 921 W for the designed PMLA. The study outlines the variation seen in the performance of the machine in such diverse conditions they go through during their life cycle.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.