Abstract

A single-switch nonisolated dc/dc converter for a stand-alone photovoltaic (PV)-battery-powered pump system is proposed in this paper. The converter is formed by combining a buck converter with a buck-boost converter. This integration also resulted in reduced repeated power processing, hence improving the conversion efficiency. With only a single transistor, the converter is able to perform three tasks simultaneously, namely, maximum-power-point tracking (MPPT), battery charging, and driving the pump at constant flow rate. To achieve these control objectives, the two inductors operate in different modes such that variable switching frequency control and duty cycle control can be used to manage MPPT and output voltage regulation, respectively. The battery in the converter provides a more steady dc-link voltage as compared to that of a conventional single-stage converter and hence mitigates the high voltage stress problem. Experimental results of a 14-W laboratory prototype converter with a maximum efficiency of 92% confirmed the performance of the proposed converter when used in a PV-battery pump system.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call