Abstract

Single-polarization single-mode (SPSM) fiber can efficiently eliminate polarization mode coupling, polarization mode dispersion, and polarization-dependent loss. Up to now, most single-polarization fibers have been designed based on form birefringence, which would result in a non-Gaussian field distribution and a small effective mode field area. In this paper, a novel structure of SPSM photonic crystal fibers based on the resonant coupling phenomena is proposed and analyzed by using a full-vector finite-element method with a second-order transparent boundary condition. From the numerical results it is confirmed that this fiber has a near-Gaussian mode field within the wavelength range from 1.46 to 2.2 μm, where only one polarized mode exists effectively, and the mode field area is about 79 μm(2) at the wavelength of 1.55 μm, matching that of the conventional single-mode fiber.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.