Abstract
The development of a new class of devices for the suppression of structural vibration becomes possible by exploiting the unique properties of single-crystal piezoceramics. These vibration absorbers will be compact, robust, and demand minimal power for operation. They will be characterized by frequency agility, which means that the absorber tuning parameters can adapt rapidly to controller command and tuning can be accomplished over a wide frequency range. Identified applications include control of turbomachinery vibration, flexible space structures, jitter control in optical systems, and vibration isolation in machinery mounts. The current state-of-the-art adaptive vibration absorber tuning range is fundamentally limited by the electromechanical coupling of presently available polycrystalline piezoceramic materials. The narrow tuning range characteristic of current vibration absorbers severely limits the implementation of the solid-state absorber concept. This work presents efforts related to the design of vibration absorbers that use the single-crystal piezoceramic large electromechanical coupling to achieve greatly enhanced tuning over a wide frequency range. Absorber electromechanical coupling-coefficients greater than 50% were obtained. Design issues specifically related to the use of single crystals in vibration absorbers were identified and addressed. Several device configurations were analyzed and tested. Good agreement was observed between analytical and experimental results.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Journal of Intelligent Material Systems and Structures
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.