Abstract

The docking mechanism is critical for unmanned surface vehicle (USV) applications, such as traction, dragging, charging, data transmission, building pontoons, etc. These applications are significant for observation, exploration, data acquisition, patrol, rescuing, etc., in aquatic environments. In this paper, a novel autonomous docking mechanism for USVs is proposed. It is capable of (1) docking the USV subject to disturbance efficiently, (2) latching without power consumption after the docking is completed, and (3) guiding the docking head to three specific angles at the end of the docking process. This paper proved the feasibility and rationality of the docking mechanism through theoretical force analysis. Experiments with three different scenarios are implemented to test the mechanism's performance. The experimental results show that the docking success rate is greater than or equal to 90 <inline-formula xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"><tex-math notation="LaTeX">$\%$</tex-math></inline-formula> on the disturbed water surface.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call