Abstract

The objective of this study is to design a robust receding-horizon observer for systems described by nonlinear models with uncertain parameters. Robustification in the presence of model uncertainties naturally leads to the formulation of a nonlinear min-max optimization problem, which can either be solved numerically or which can be converted to a simpler minimization problem using linearization along a nominal trajectory and recent results in linear robust receding-horizon estimation. This method is first evaluated in simulation and then with real-life experimental data collected from continuous cultures of phytoplankton.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.