Abstract
BackgroundTransforaminal percutaneous endoscopic lumbar surgeries (PELS) for lumbar disc herniation and spinal stenosis are growing in popularity. However, there are some problems in the establishment of the working channel and foraminoplasty such as nerve and blood vessel injuries, more radiation exposure, and steeper learning curve. Rapid technological advancements have allowed robotic technology to assist surgeons in improving the accuracy and safety of surgeries. Therefore, the purpose of this study is to develop a robot-assisted system for transforaminal PELS, which can provide navigation and foraminoplasty.MethodsThe robot-assisted system consists of three systems: preoperative planning system, navigation system, and foraminoplasty system. In the preoperative planning system, 3D visualization of the surgical segment and surrounding tissues are realized using the multimodal image fusion technique of computed tomography and magnetic resonance imaging, and the working channel planning is carried out to reduce the risk for injury to vital blood vessels and nerves. In the navigation system, the robot can obtain visual perception ability from a visual receptor and automatically adjust the robotic platform and robot arm to the appropriate positions according to the patient’s position and preoperative plan. In addition, the robot can automatically register the surgical levels through intraoperative fluoroscopy. After that, the robot will provide navigation using the 6 degree-of-freedom (DOF) robot arm according to the preoperative planning system and guide the surgeon to complete the establishment of the working channel. In the foraminoplasty system, according to the foraminoplasty planning in the preoperative planning system, the robot performs foraminoplasty automatically using the high speed burr at the end of the robot arm. The system can provide real-time feedback on the working status of the bur through multi-mode sensors such as multidimensional force, position, and acceleration. Finally, a prototype of the system is constructed and performance tests are conducted.DiscussionOur study will develop a robot-assisted system to perform transforaminal PELS, and this robot-assisted system can also be used for other percutaneous endoscopic spinal surgeries such as interlaminar PELS and percutaneous endoscopic cervical and thoracic surgeries through further research. The development of this robot-assisted system can be of great significance. First, the robot can improve the accuracy and efficiency of endoscopic spinal surgeries. In addition, it can avoid multiple intraoperative fluoroscopies, minimize exposure to both patients and the surgical staff, shorten the operative time, and improve the learning curve of beginners, which is beneficial to the popularization of percutaneous endoscopic spinal surgeries.
Highlights
Transforaminal percutaneous endoscopic lumbar surgeries (PELS) for lumbar disc herniation and spinal stenosis are growing in popularity
Our study will develop a robot-assisted system to perform transforaminal PELS, and this robot-assisted system can be used for other percutaneous endoscopic spinal surgeries such as interlaminar PELS and percutaneous endoscopic cervical and thoracic surgeries through further research
If we can improve the accuracy of the landing point and decrease radiation exposure and complications, it will be beneficial to the popularization of transforaminal PELS
Summary
Transforaminal percutaneous endoscopic lumbar surgeries (PELS) for lumbar disc herniation and spinal stenosis are growing in popularity. There are some problems in the establishment of the working channel and foraminoplasty such as nerve and blood vessel injuries, more radiation exposure, and steeper learning curve. Percutaneous endoscopic lumbar surgery (PELS) is considered to be a safe and effective kind of minimally invasive surgery (MIS), and is growing in popularity for the management of lumbar disc herniation and spinal stenosis [1, 2]. Transforaminal PELS includes three procedures as follows: percutaneous endoscopic lumbar discectomy (PELD) for disc herniation, foraminoplasty for the narrow foramen, and ventral facetectomy for foraminal and lateral recess stenosis [6]. If we can improve the accuracy of the landing point and decrease radiation exposure and complications, it will be beneficial to the popularization of transforaminal PELS
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.