Abstract

This paper presents a self-powered motion sensor based on reverse-electrowetting on dielectric (REWOD) energy harvesting having the capability of remotely keeping a track of any motion activity. The energy harvester includes a rectifier and a voltage regulator to provide the DC supply voltage to the analog front-end and the transmitter to wirelessly transfer the data from the motion sensor. The on-chip circuitry includes a seven-stage voltage-doubler based rectifier, an amplifier, an analog-to-digital converter (ADC), and a transmitter, and is designed in standard 180 nm CMOS process with a supply voltage of 1.8 V. The recycled folded cascode (RFC) based charge amplifier has a closed-loop gain of 53 dB within the bandwidth of 1–150 Hz, which is suitable to detect any low-frequency motion signal. An 8-bit SAR-ADC is designed to digitize the amplified signal with a sampling rate of 1 ksamples/s. The transmitter used for this application operates in the 3.1–5 GHz frequency band with an energy efficiency of 8.5 pJ/pulse at 100 kbps data rate. The wireless motion sensing device with the REWOD can be suitable for quantitatively monitoring the motion-related data as a wearable sensor.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call