Abstract

In order to take into account the computing efficiency and flexibility of calculating transcendental functions, this paper proposes one kind of reconfigurable transcendental function generator. The generator is of a reconfigurable array structure composed of 30 processing elements (PEs). The coordinate rotational digital computer (CORDIC) algorithm is implemented on this structure. Different functions, such as sine, cosine, inverse tangent, logarithmic, etc., can be calculated based on the structure by reconfiguring the functions of PEs. The functional simulation and field programmable gate array (FPGA) verification show that the proposed method obtains great flexibility with acceptable performance.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call