Abstract

In recent years, biomimetic polarization navigation has become a research hotspot in navigation fields because of its autonomy and concealment. Existing point-source polarization navigation sensors mainly use a logarithmic amplifier as the arithmetic unit to obtain polarization information. However, these sensors suffer from zero drift and low detection accuracy, which limits their application range. To address the above issues, a polarization navigation sensor based on a differential amplifier is designed as the operational unit. Based on the change of the arithmetic unit of the polarization signal, the algorithm for calculating the heading angle of the sensor is improved. The results of the orientation experiments with the designed sensor in clear weather indicate that the orientation error is ±1.243∘, and the standard deviation is 0.351°. The polarization navigation sensor can extract polarized light information and calculate the heading without accumulation of errors over time accurately and achieves good real-time performance.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.