Abstract
In the traditional pre-joining technology of aircraft panels, bolts are generally employed for pre-joining. Due to the length and width of panels, bilateral manual operations are required to operate bolts. In this case, there are problems such as low work efficiency, unstable quality, cumbersome operation, and inconvenient installation-removal. This paper takes a temporary fastener with one-side installation-removal as a research object and conducts in-depth research on three levels of quick-pressing: unloading, stable self-locking, and easy automatic installation. Firstly, by coordinating the ratchet and the spring, the restoring force of the spring is used to make the cylindrical top-rod rotary and realize the telescopic function to achieve quick loading and unloading of fasteners; subsequently, through the cooperation between the buckle and the spring, loading and unloading self-locking is attained; afterwards, through the threaded joining and the same cylinder design between the external profile components, the convenience of fasteners for automatic transportation is realized. When assembling two thin-walled parts of the aircraft, only continuous one-side pressing of fasteners is needed to carry out the tightening and unloading work, namely, one-pressing installation and one-pressing removal, which could solve the problems caused by the bilateral operation of traditional bolts and part tolerances. After the application of the fasteners into the pre-joining process of aircraft panels, the experiment results have shown that this temporary fastener provided a good clamping effect, could be quickly and efficiently installed and removed by continuous one-pressing, and avoided the problems of complexity and high cost for pre-joining processes.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.