Abstract

The aim of this study was to develop a colon-specific microparticle formulation based on pectin. Resveratrol was used as a model drug due to its potential therapeutic efficacy on colitis and colon cancer. Microparticles were produced by cross-linking pectin molecules with zinc ions and with glutaraldehyde as hardening agent for pectins. Different microparticles were prepared by varying the formulation variables. Effect of these formulation variables were investigated on particle shape and size, moisture content and weight-loss during drying, encapsulation efficiency, swelling–erosion ratio, and drug release pattern of the formulated microparticles. Formulation conditions were optimized based on the in vitro drug release study. Morphology, Fourier transform infrared spectroscopy, stability, and in vivo pharmacokinetic study of the microparticles prepared at the optimized formulation conditions were performed. Microparticles were spherical with <1 mm diameter and encapsulation efficiencies of >94%. The glutaraldehyde-modified microparticles prepared at optimized formulation conditions revealed colon specific in vitro and in vivo drug release. Plasma appearance of drug was delayed for 4–5 h after their administration directly into stomach, but displayed comparable area under the curve to other controls in the experiment, indicating the potential of the developed formulation as a colon-specific drug delivery system.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.