Abstract
Nuclear power is a sustainable energy source, but radiation management is required for its safe use. Radiation-detection technology has been developed for the safe management of radioactive materials in nuclear facilities but its performance may vary depending on the size and complexity of the structure of nuclear facilities. In this study, a nuclear monitoring system using a multi-sensor network was designed to monitor radioactive materials in a large nuclear facility. Additionally, an artificial-intelligence-based localization algorithm was developed to accurately locate radioactive materials. The system parameters were optimized using the Geant4 Application for Tomographic emission (GATE) toolkit, and the localization algorithm was developed based on the performance evaluation of the Artificial Neural Network (ANN) and Decision Tree (D-Tree) models. In this article, we present the feasibility of the proposed monitoring system by converging the radiation detection system and artificial intelligence technology.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.