Abstract

A novel mode converter from TE <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">31</sub> mode to TM <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">01</sub> mode in circular waveguide is designed for high power microwave (HPM) system application in this paper. This mode converter is designed based on the mode matching analysis, where the tangential electric field and magnetic field components are continuous on the discontinuous interface of a circular-to-rectangular waveguide junction. The cylindrical TE <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">31</sub> mode is firstly transformed into six ways of rectangular TE <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">10</sub> mode, and then the six ways of TE <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">10</sub> mode are synthesized and converted into the output cylindrical TM <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">01</sub> mode. The maximum conversion efficiency can overreach 99% in the working bandwidth from 1.53GHz to 1.61GHz. The power capacity of this mode converter can reach 1.6GW when it inflates SF6 gas with one atmospheric pressure.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.