Abstract
The loxP-Cre site-specific recombination system of phage P1 was used to develop a novel strategy to construct cointegrate vectors for Agrobacterium-mediated plant transformation. A pTi disarmed helper plasmid (pAL1166) was constructed by replacing the oncogenic T-DNA by a loxP sequence and a spectinomycin resistance marker in the octopine-type pTiB6 plasmid. The cre gene was cloned into an unstable incP plasmid. A third plasmid, which did not replicate in Agrobacterium and contained another loxP sequence together with a kanamycin resistance marker, was used to test the system. Electroporation of this third plasmid into an Agrobacterium strain harbouring both pAL1166 and the Cre-encoding plasmid resulted in kanamycin-resistant cells containing a cointegrate between pAL1166 and the incoming plasmid. Cointegration occurred by Cre-mediated recombination at the loxP sites, and the cointegrate was stabilized in the Agrobacterium cells by the loss of the Cre-encoding plasmid shortly after the recombination event had taken place.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.