Abstract
At present, magnetic induction switches are widely used in industrial automation control and biological sensing systems. A core module composed of a magnetic sensing device and a signal conditioning circuit is designed and analyzed in this paper. Utilizing a permalloy film with the anisotropic magneto-resistance (AMR) effect, the novel magnetic induction switch shows its ability to correctly detect the direction of magnetic fields. Furthermore, an interfacial circuit based on a trans-impedance amplifier (TIA) is designed to measure and regulate the output signal of the sensing device. Accurate simulation results show the gain of the TIA reaches up to 51.36 dB with a bandwidth of 1.3 GHz and a power consumption of 3.65 mW. The outstanding performance of the proposed module demonstrates the possibility of solving the problems induced by high input impedance, high frequency, and parasitic effects in magnetic induction switches.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.