Abstract

This paper presents a novel linear tubular permanent magnet (PM) energy harvester to scavenge energy from ambient vibrations. The proposed linear PM energy harvester consists of a mover attached with PMs and a slotted stator with build-in two-phase electromagnetic coils to induce the electromagnetic induction for converting vibrations into useful electrical energy. The magnetic circuit model of the PM harvester is built to analyze the parameters about scavenging energy and used to optimize the non-dimensional geometry factors and the structural parameters in order to maximize harvested energy under given vibration and space conditions. To confirm the design, dynamic FE simulations were conducted and compared with the analytical results. Simulation results indicate that the proposed PM harvester is able to scavenge about 100 W DC power when the RMS of vibration velocity equals to 0.4 m/s. Also, the harvested power increases as the vibration velocity increasing.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.