Abstract

This work deals with the modeling and design of a novel bubbling fluidized bed reactor that aims to improve the CO2 carrying capacity of CaO particles in CO2 capture systems by calcium looping (CaL). Inside the new reactor (the recarbonator) the particles that arrive from the carbonator of the CaL system react with a concentrated stream of CO2, thereby increasing their carbonate content up to a certain value, which can be predicted by means of the model proposed. The recarbonator model presented in this work is based on the Kunii and Levenspiel model for bubbling bed reactors of fine particles. The reduction in the gas volume due to the reaction of CO2 with CaO is taken into account by dividing the recarbonator into a number of reactor elements where the bubble properties are recalculated, whereas the solids are perfectly mixed throughout the bed. The model has been used to test the conceptual design of a CaL system that incorporates an additional recarbonator reactor to more than double the residual CO2 ...

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.