Abstract
AbstractA novel creep testing machine was designed to test austenitic steel foil AISI 347 under the elevated temperature of 700°C. The creep test was repeated in five stress levels from low‐stress 55 MPa to severe applied stress 220 MPa for 0.25 mm thickness samples. The machine was equipped with a shield inert gas injection system, and tests were repeated in a nonoxidative area. The creep rupture behavior of the foil is well represented using the modified three‐parameter Theta Projection Concept model. Each model parameter is best represented as a function of the applied stress. Comparison between the results of creep life in different mediums shows that the oxidation effect was the dominant phenomenon in the creep process. Moreover, avoiding oxidation affects the steady‐state stage growth, and afterward, the creep life was increased by more than 40%. Post analyses of ruptured creep samples compare the creep cavitation at triple grain boundaries in a different environment.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Fatigue & Fracture of Engineering Materials & Structures
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.