Abstract
The exploitation of carbon nanotube (CNT) and metal-organic framework (MOF) composite materials has been highly desirable in a number of applications. However, the construction of high dispersibility and stability CNT/MOF complex structures is still an enormous challenge. Herein, a novel assembly method is established for the construction of a CNT/Ni-MOF (0.1 CNT/MOF, 0.2 CNT/MOF, 0.3 CNT/MOF) interpenetrated structure by a solvothermal process. The MOFs can be robustly anchored on the surface of CNTs. Through a series of characterizations, the MOF can be comfortably integrated into the CNT fibers, which exhibits the enhancement of carrier mobility and fluorescence properties. The microwave absorption properties of the CNT/MOF are explored by a vector network analyzer. The 0.1 CNT/MOF has a maximum absorption of −9.2 dB at 18 GHz with a thickness of 5 mm, while the 0.2 CNT/MOF has a maximum absorption of −24.32 dB at 4.5 GHz with a thickness of 5 mm, a performance maximum. Therefore, the 0.2 CNT/MOF structures are potential candidates to ameliorate the microwave absorption properties.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.