Abstract

Solar thermal power tower systems are the primary technology being proposed for solar electricity from thermal energy. Operational limits on these towers are often driven by mechanical properties under significant thermal loads, particularly at the receiver where incoming flux is converted to thermal energy. While the solar receiver’s efficiency is largely driven by its optical properties, thermomechanical stresses on the receiver limits the operational envelope. One pathway to higher efficiency is greater allowable solar fluxes on the receiver but novel materials are required. The present study uses computational fluid dynamics to describe a parametric design space for a microvascular carbon/carbon composite solar receiver as a new material option for high flux solar receivers. Simulations are conducted for different microvascular geometries considering the role of material properties and heat transfer fluids, for the impact on thermal efficiency, and allowable strain. Results show that microscale receiver modules made of the proposed carbon/carbon composite could achieve thermal efficiencies over 90% and full-scale receivers can achieve up to 85% thermal efficiency for the design explored considering realistic strain limits, flux levels, and material properties. These values are highly dependent on the heat transfer fluid pairing, the through plane thermal conductivity of the carbon/carbon composite, the path architecture of the microscale receiver, and the incident solar flux profiles.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call