Abstract

This paper investigates a new disturbance observer based non-singular fast terminal sliding mode control technique for the path tracking and stabilization of non-linear second-order systems with compound disturbance. The compound disturbance is comprised of both parametric and non-parametric uncertainties. While warranting fast convergence rate and robustness, it also dominates the singularity and complex-value number issues associated with conventional terminal sliding mode control. Furthermore, due to the estimation properties of the observer, knowledge about the bounds of the uncertainties is not required. The simulation results of two case studies, the velocity and path tracking of an autonomous underwater vehicle and the stabilization of a chaotic Φ6-Duffing oscillator, validate the efficacy of the proposed method.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call