Abstract

To meet the need of low-dimensional spintronic devices, we investigate the electronic structure and magnetic properties of Mn-doped GaN monolayer using first-principles method. We find the nonmagnetic GaN monolayer exhibits half-metallic ferromagnetism by Mn doping due to double-exchange mechanism. Interestingly, the ferromagnetic coupling in Mn-doped GaN monolayer is enhanced with tensile strain and weakened with compressive strain. What is more, the ferromagnetic–antiferromagnetic transformation occurs under compressive strain of −9.5%. These results provide a feasible approach for fabrication of a new GaN monolayer based diluted magnetic semiconductor.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call