Abstract
Recent years have witnessed a tremendous development in various scientific and industrial fields. As a result, different types of networks are widely introduced which are vulnerable to intrusion. In view of the same, numerous studies have been devoted to detecting all types of intrusion and protect the networks from these penetrations. In this paper, a novel network intrusion detection system has been designed to detect cyber-attacks using complex deep neuronal networks. The developed system is trained and tested on the standard dataset KDDCUP99 via pycharm program. Relevant to existing intrusion detection methods with similar deep neuronal networks and traditional machine learning algorithms, the proposed detection system achieves better results in terms of detection accuracy.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: International Journal of Communication Networks and Information Security (IJCNIS)
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.