Abstract
AbstractA group of river managers, stakeholders, and scientists met during summer 2005 to design a more naturalized flow regime for the Lower Missouri River (LMOR). The objective was to comply with requirements under the U.S. Endangered Species Act to support reproduction and survival of threatened and endangered species, with emphasis on the endangered pallid sturgeon (Scaphirhynchus albus), while minimizing negative effects to existing social and economic benefits of prevailing river management. Specific hydrograph requirements for pallid sturgeon reproduction are unknown, hence much of the design process was based on features of the natural flow regime. Environmental flow components (EFCs) extracted from the reference natural flow regime were used to design and assess performance of alternative flow regimes.The design process incorporated a primary stage in which conceptual hydrographs were developed and assessed for their general ecological and social‐economic performance. The second stage accounted for hydroclimatic variation by coding the conceptual hydrographs into reservoir release rules, adding constraints for downstream flooding and low‐storage precludes, and running the rules through 100 years of hydroclimatic simulation. The output flow regimes were then evaluated for presumed ecological benefits based on how closely they resembled EFCs in the reference natural flow regime. Flow regimes also were assessed for social‐economic cost indicators, including days of flooding of low‐lying agricultural land, days over flood stage, and storage levels in system reservoirs.Our experience with flow‐regime design on the LMOR underscored the lack of confidence the stakeholders place in the value of the natural flow regime as a measure of ecosystem benefit in the absence of fundamental scientific documentation. Stakeholders desired proof of ecological benefits commensurate with the certainty of economic losses. We also gained insight into the processes of integrating science into a collaborative management exercise. Although the 2005 collaborative effort failed to reach a consensus among stakeholders on a naturalized flow regime, the process was successful in pilot‐testing a design approach; it helped focus scienctific efforts on key knowledge gaps; and it demonstrated the potential for collaborations among scientists, stakeholders, and managers in river management decision making. Copyright © 2008 John Wiley & Sons, Ltd.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.