Abstract
We present the modular design and characterization of a multi-modality video-rate two-photon excitation (TPE) microscope based on integrating a digital micromirror device (DMD), which functions as an ultrafast beam shaper and random-access scanner, with a pair of galvanometric scanners. The TPE microscope system realizes a suite of new imaging functionalities, including (1) multi-layer imaging with 3D programmable imaging planes, (2) DMD-based wavefront correction, and (3) multi-focus optical stimulation (up to 22.7 kHz) with simultaneous TPE imaging, all in real-time. We also report the detailed optomechanical design and software development that achieves high level system automation. To verify the performance of different microscope functions, we have devised and performed imaging experiments on Drosophila brain, mouse kidney and human stem cells. The results not only show improved imaging resolution and depths via the DMD-based adaptive optics, but also demonstrate fast multi-focus stimulation for the first time. With the new imaging capabilities, e.g., tools for optogenetics, the multi-modality TPE microscope may play a critical role in the applications pertinent to neuroscience and biophotonics.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.