Abstract

The Entropy Generation Minimization (EGM) approach is applied to the design of a new integrated radar aircraft skin, which both meets requisite aircraft structural needs and provides a pathway for the waste heat from structurally integrated power devices. Thermoelectric (TE) devices, sandwiched between a heterogeneous skin layer and the radar devices for the purpose of harvesting waste heat rejected to the ambient, are considered in the analysis. A heterogeneous skin layer is designed using the EGM approach, which is then applied to the overall mission of the aircraft to determine the optimal skin thickness and volume fractions of the matrix and inclusions in the composite skin.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.