Abstract

The design of a vacuum ultraviolet spectroscopy system has been performed to monitor and provide feedback for impurity control in SPARC. The spectrometer, covering a wavelength range of 10-2000Å through a flat-field configuration with diffraction gratings, incorporates five survey lines of sight. This allows for comprehensive impurity analysis across the core and four divertor regions (inner/outer and upper/lower). Its compact modular design facilitates vertical stacking of each spectrometer unit, significantly reducing space in the tokamak hall, where a dedicated radiation shielding bunker will be built. Safety features include a secondary helium enclosure to mitigate tritium permeation risks during deuterium-tritium (D-T) operations and shielding within the beamlines for enhanced radiation protection. The silicon carbide mirror design for divertor observation ensures its survivability in the in-vessel environment of SPARC, validated by thermal and electromagnetic analysis. Signal modeling and data acquisition testing results show that an exposure time of a few milliseconds is appropriate considering photon flux reaching the detector, demonstrating the system's capability for discharge control that includes disruption avoidance.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.