Abstract
A Vernier-tuned distributed Bragg reflector (DBR) semiconductor laser is an effective monolithic approach for wide wavelength tunability, at the expense, however, of costly electron-beam lithography during fabrication. In this Letter, a tunable laser design with equivalent-chirp based, flat-top envelope grating reflectors is proposed that can be implemented easily by conventional two-beam interference lithography. The principle is described, and a detailed design shows uniform output power (0.08 dB variation) and excellent side-mode suppression ratio (47 dB minimum) within a wide tuning range (>32 nm) through numerical simulation.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.