Abstract
Increasingly, artificial intelligent systems look to neuromorphic photonics for its speed and its low loss, high bandwidth interconnects. Silicon photonics has shown promise to enable the creation of large scale neural networks. Here, we propose a monolithic silicon opto-electronic resonator spiking neuron. Existing designs of photonic spiking neurons have difficulty scaling due to their dependence on certain nonlinear effects, materials, and devices. The design discussed here uses optical feedback from the transmission of a continuously pumped microring PN modulator to achieve excitable dynamics. It is cascadable, capable of operating at GHz speeds, and compatible with wavelength-division multiplexing schemes for linear weighting. It is a Class 2 excitable device via a subcritical Hopf bifurcation constructed from devices commonly found in many silicon photonic chip foundries.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.