Abstract

This paper presents a momentum-based control framework for floating-base robots and its application to the humanoid robot “Atlas”. At the heart of the control framework lies a quadratic program that reconciles motion tasks expressed as constraints on the joint acceleration vector with the limitations due to unilateral ground contact and force-limited grasping. We elaborate on necessary adaptations required to move from simulation to real hardware and present results for walking across rough terrain, basic manipulation, and multi-contact balancing on sloped surfaces (the latter in simulation only). The presented control framework was used to secure second place in both the DARPA Robotics Challenge Trials in December 2013 and the Finals in June 2015.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call