Abstract
Natural language processing (NLP) based on deep learning provides a positive performance for generative dialogue system, and the transformer model is a new boost in NLP after the advent of word vectors. In this paper, a Chinese generative dialogue system based on transformer is designed, which only uses a multi-layer transformer decoder to build the system and uses the design of an incomplete mask to realize one-way language generation. That is, questions can perceive context information in both directions, while reply sentences can only output one-way autoregressive. The above system improvements make the one-way generation of dialogue tasks more logical and reasonable, and the performance is better than the traditional dialogue system scheme. In consideration of the long-distance information weakness of absolute position coding, we put forward the improvement of relative position coding in theory, and verify it in subsequent experiments. In the transformer module, the calculation formula of self-attention is modified, and the relative position information is added to replace the absolute position coding of the position embedding layer. The performance of the modified model in BLEU, embedding average, grammatical and semantic coherence is ideal, to enhance long-distance attention.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: International Journal of Computational Intelligence Systems
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.