Abstract

A novel model predictive control- (MPC-) based trajectory tracking controller for mobile robot is proposed using the event-triggering mechanism, and the aim is to solve the problem that the MPC optimization problem requires a large amount of online computation and communication resources. This method includes two different event-triggering strategies, namely, the event-triggering based on threshold curve and the event-triggering based on threshold band. The selection of the triggering threshold is achieved by applying the statistical method to the historical data of the trajectory tracking of the mobile robot under the classic MPC method. Simulation and experimental tests illustrate that the proposed approach is able to significantly reduce the computation and communication burdens without affecting the control performance. Furthermore, the experimental results show that compared with the classic MPC-based tracking method, the proposed two event-triggering strategies can reduce 28.1% and 75.7% of the computation load and 0.886 s and 2.385 s communication time.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.