Abstract

Septic shock is a leading cause of mortality in intensive care patients, and no specific drugs are as yet available for its treatment. Therefore, new leads are required in order to increase the number of active molecules that may develop into efficacious and safe LPS-neutralizing molecules during pre-clinical stages. We used peptides, derived from the binding regions of known LPS-binding proteins, as scaffolds to introduce modifications at the amino acid level. Structure-activity relationship studies have shown that these modifications generate highly active peptides. Thus, from a bioactive peptide with an initial 16 amino acid residues, a tetrapeptide sequence was determined. After inserting this sequence in a Cys cyclic peptide, it showed the same biological activity as the parent peptide. This sequence could provide the basis for the design of small molecules with LPS-binding properties.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.