Abstract

We numerically demonstrated a surface-illuminated Si PIN photodiode (PD) structure with a metasurface composed of etched isosceles triangle pillars that can enhance sensitivity in the near-infrared wavelength range (NIR) by enabling directional scattering (DS) of photons. The metasurface is designed to act as a deflector to increase the absorption efficiency by extending the photon dwell time. This is particularly effective in thin intrinsic layers (i-layers) of silicon, surpassing the capabilities of conventional omnidirectional scattering gratings. Our results show a 3.5-fold increase in internal quantum efficiency over wavelengths above 0.9 µm compared to the structure without metasurface. The absorption enhancement brought about by directional scattering is not limited to thin i-layers; it can potentially improve a wide range of photodiode geometries and structures. Furthermore, the proposed structure, consisting of an all-Si layer and a simple geometric etching process, makes it compatible with foundry fabrication methods and opens up new possibilities for expanding applications of Si PDs.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call