Abstract

Anticancer structure-activity relationship studies on aminosteroid (5α-androstane) derivatives have emerged with a promising lead candidate: RM-133 (2β-[1-(quinoline-2-carbonyl)pyrrolidine-2-carbonyl]-N-piperazine-5α-androstane-3α,17β-diol), which possesses high in vitro and in vivo activities against several cancer cells, and selectivity over normal cells. However, the relatively weak metabolic stability of RM-133 has been a drawback to its progression toward clinical trials. We investigated the replacement of the androstane backbone by a more stable mestranol moiety. The resulting compound, called RM-581 ({4-[17α-ethynyl-17β-hydroxy-3-methoxyestra-1,3,5(10)-trien-2-yl]piperazin-1-yl}[(2S)-1-(quinolin-2-ylcarbonyl)pyrrolidin-2-yl]methanone), was synthesized efficiently in only five steps from commercially available estrone. In comparison with RM-133, RM-581 was found to be twice as metabolically stable, retains potent cytotoxic activity in breast cancer MCF-7 cell culture, and fully blocks tumor growth in a mouse xenograft model of breast cancer. Advantageously, the selectivity over normal cells has been increased with this estrane version of RM-133. In fact, RM-581 showed a better selectivity index (15.3 vs. 3.0) for breast cancer MCF-7 cells over normal breast MCF-10A cells, and was found to be nontoxic toward primary human kidney proximal tubule cells at doses reaching 50 μm.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.