Abstract

The design and performance of a low-loss surface acoustic wave (SAW) reflector filter are presented. The structure is a dual-track configuration incorporating two interdigital transducers (IDTs) and reflectors in each track. Extremely wide bandwidth can be obtained if chirped IDTs and reflectors are used. From the theoretical conditions for low-loss operation of the reflector filter, a design rule for the distances between the chirped components and for their lengths is derived. Because the transfer function of the filter is predominantly determined by the reflectors, a new synthesis method for chirped reflectors has been developed. For the design of the reflectors, phase-weighting and finger-width-weighting techniques were used to reduce passband distortions and improve the shape factor and stopband rejection. The filter has been fabricated on 128 degrees YX-LiNbO/sub 3/. The center frequency and fractional bandwidth are 200 MHz and 100%, respectively, the minimum insertion loss is 4 dB, a passband ripple is about 1 dB, and the stopband rejection is better than 35 dB.< <ETX xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">&gt;</ETX>

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.