Abstract

An electronic oscillator circuit is designed by connecting an inductor in series with a locally-active PTC Memristor and a battery. The PTC Memristor is locally active on the negative resistance region of its DC [Formula: see text]–[Formula: see text] curve. A DC operating point [Formula: see text] is chosen on the locally-active region of the PTC Memristor and a small-signal equivalent circuit at [Formula: see text] is derived via Taylor series. The small-signal admittance [Formula: see text] of the composite one-port in Fig. 1 is derived using the small-signal equivalent circuit at [Formula: see text], in series with an inductor whose value is chosen such that [Formula: see text] at some [Formula: see text]. The sinusoidal oscillation computed numerically from this circuit is shown to emerge from a supercritical Hopf bifurcation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.