Abstract

To machine a complex precision product, several tools are needed. These tools are placed on a tool turret. A tool must return several times to its original position. To attain a very high repeatability between the upper part and the base of the tool turret mounted on a precision lathe, it is preferable that the parts of the tool turret are statically determined in their contacts. This is attained by using a kinematic coupling. To attain the required stiffness this coupling is provided with a preload of 1.5 · 10 3 N. The machining forces are typically less than 1 Newton. A special kinematic coupling, consisting of grooves and balls, was designed, made, and tested. By providing the grooves with self-adjusting surfaces, hysteresis is reduced to less than one-tenth of a micrometer. Maximum stiffness is aimed at by using cemented carbide, a material with a high admissible stress, at the contact points. Experiments show that this kinematic coupling, under a preload of 1.5 · 10 3 N, has a static stiffness of more than 1 · 10 8 N/m in every direction and a repeatability better than one-tenth of a micrometer.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.