Abstract

A novel bandpass filter (BPF), which is fabricated with a commercial CMOS process, demonstrating a low insertion loss in the passband and multiple transmission zeros in stopbands, is presented for 24-GHz automotive ultrawideband (UWB) radar systems. The filter combines a second-order asymmetrically compact resonator filter with a source-load coupling mechanism to realize three transmission zeros; two zeros are arranged in the lower stopband, and one zero is located in the upper stopband. To achieve a compact layout size and a low insertion loss, a semilumped approach, which is accomplished with mixed utilization of high-impedance coplanar waveguide lines and lumped capacitors, is used to construct the chip filter. A K-band experimental prototype that has a very compact size of 0.35 × 0.8 mm <sup xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">2</sup> was realized. The average insertion loss in the filter's passband is about 2.7 dB, the return loss is greater than 15 dB within the frequencies of 24-27.5 GHz, and the attenuation levels at the three transmission zeros all greater than 35 dB.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call