Abstract

The self-consistent nonlinear simulation of a Ka-band, second harmonic two-stage gyroklystron amplifier is presented in this paper. The beam-wave interaction in the gyroklystron is studied by using a self-consistent nonlinear simulation code GKLSC, and the electron bunching pictures of the different positions in phase space are demonstrated in detail. The effects of various parameters, such as drift tube length, input power, frequency, velocity ratio, guiding center radius, magnetic field strength, velocity spread and beam current on the electronic efficiency, gain, and output power are discussed. The simulated results show that the designed gyroklystron amplifier can obtain about 21% electronic efficiency, 43 dB gain, and 0.6% bandwidth, respectively. The performance of the designs is also confirmed by a particle-in-cell code.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.